
Curriculum Map

Subject: Computer Science: Paper 2 – Algorithms and programming Year group: 12

Time period Autumn 1 Autumn 2 Spring 1 Spring 2 Summer 1 Summer 2

Content

Declarative Knowledge
–

‘Know What’

2.1.2 -Thinking ahead
(a) inputs and outputs
(b) preconditions for devising
a solution to a problem.

2.2.1 Programming
techniques
(e) Use of an IDE to
develop/debug a program
(a) Programming constructs:
sequence, iteration
,branching

2.1.4 -Thinking logically
(a) Decision making
(b) Conditions that affect
decision making
(c) Program flow decisions

2.2.1 Programming
techniques
b) Recursion

2.1.3 - Thinking Procedurally
(a) (b) (c) & (d) Procedural
languages paradigm used
for problem solving

2.2.1 Programming
techniques
(c) Global and local
variables.
(d) Modularity, functions
and procedures, parameter
passing by value and by
reference

2.2.2 Computational
methods
(a) Features that make a
problem solvable by
computational methods
(b) Problem Recognition
(c) Problem Decomposition
(d) Use of divide and
conquer

1.4.2 – Data structures
(a) Arrays (of up to 3
dimensions), records, lists
and tuples

2.3.1 - Algorithms
(a) Analysis and design of
algorithms
(b) The suitability of
different algorithms for
given data sets
(c) Measures and
methods to determine
the efficiency
of different algorithms
through the Big O
notation
(d) Comparison of the
complexity of algorithms.

2.3.1 - Algorithms
(d) Standard algorithms
(Bubble sort, insertion
sort, merge sort, quick
sort, binary search and
linear search)

(c) Algorithms for the
main data structures,
(Stacks, queues, trees,
linked lists, depth-first
(post-order) and breadth-
first traversal of trees)

1.3.4 – Web technologies
(b) Search engine
indexing
(c) PageRank Algorithm

1.2.3 - Software
Development
(a) The different software
methodologies, waterfall
lifecycle, agile
methodologies, extreme
programming, the spiral
model and rapid
application development.
(b) The relative merits
and drawbacks of
different methodologies

Component 3
Non Exam Assessment –

programming project

Introduction to the
programming project

Skills

Procedural Knowledge
–
‘Know How’

2.1.2 -Thinking ahead
a) Identify the inputs and
outputs for a given situation.
b) Determine the
preconditions for devising a
solution to a problem.

2.2.1 Programming
techniques
e) Use an IDE to
develop/debug a program-
students are introduced to
the C# programming
language developed through
Visual Studio IDE. They use
practical programming
exercises to understand the

2.1.3 - Thinking Procedurally
a) Identify the components
of a problem.
(b) Identify the components
of a solution to a problem.
(c) Determine the order of
the steps needed to solve a
problem.
(d) Identify sub-procedures
necessary to solve a
problem.

2.2.1 Programming
techniques
(c) (d) Programming
exercises involving
functions, procedures and

1.4.2 – Data structures
a) Students will be given
problems to solve that
require the use of a tuple,
1D or 2D array or a
dynamic list. They must
use their knowledge and
design and create
solutions to these
problems. The must know
how to create and
manipulate arrays. Lists
and tuples though slicing,
sorting, searching and
extracting the data
necessary to their given
problem from the data

2.3.1 - Algorithms
d) Students will look at
the standard algorithms
for searching and sorting
data sets (Bubble sort,
insertion sort, merge sort,
quick sort, binary search
and linear search) and
compare their time and
space complexity to gain
a further understanding
as to the efficiency of the
algorithms for given data
sets. Students will
implement these
algorithms into program
code to further

1.3.4 – Web technologies
(b) (c) Students will know
how search engine
indexing collects, parses
and stores web data to
facilitate fast and
accurate information
retrieval. Students will
also investigate the
PageRank algorithm
understanding how it
ranks web pages based on
given criteria.

1.2.3 - Software
Development

Component 3

Non Exam Assessment –
programming project

Students will be
expected to (3.1) analyse,
(3.2) design, (3.3)
develop, (3.4) test, (3.5)
evaluate and document a
program written in a
suitable programming
language. The underlying
approach to the project is
to apply the principles of
computational thinking to
a practical coding

Curriculum Map

facilities of this IDE. They
acquire further knowledge of
the IDE by designing,
implementing and debugging
program code.

a) Programming exercises
involving branching (IF,
nested IF, SELECT/CASE
statements) to reiterate and
consolidate their theoretical
knowledge in a practical
application. Programming
exercises involving iteration
(FOR,WHILE,REPEAT UNTIL)

2.1.4 -Thinking logically
a) Identify the points in a
solution where a decision
has to be taken.
(b) Determine the logical
conditions that affect the
outcome of a decision.
(c) Determine how decisions
affect flow through a
program.

2.2.1b) Recursion
How it can be used and
compares to an iterative
approach. Programming
exercises involving recursion
e.g. factorial.

parameters. Understanding
parameter passing by value
and reference through
practical activities. Look at
how we use and define local
and global variables in our
programs. Programming
exercises involving
subroutines understanding
where it is necessary to
create a function with a
return value and where it is
necessary to write a
procedure.

2.2.2 Computational
methods
(a) (b) (c) & (d) Students will
know how to break down
given problems into
manageable solvable
solutions, they will apply
the techniques of
abstraction and
decomposition to the
problem. They will then
create solutions to the given
problems through program
code solutions.

structure. Students will
know the differences
between the data
structures in which is
static and dynamic. They
will utilise this skill in
problem solving by
identifying the correct
data type necessary for
their given solution.

2.3.1 - Algorithms
a) Analysis and design of
algorithms for a given
situation and determine
b) The suitability of
different algorithms for a
given task and data set, in
terms of execution time
and space.
(c) Understand the
measures and methods to
determine the efficiency
of different algorithms,
Big O notation (constant,
linear, polynomial,
exponential and
logarithmic
complexity).
(d) Compare the
complexity of algorithms
in terms of worst case big
O notation time and
space complexity.

understand their ability to
search or sort data.
Students need to
understand the Big O
notation for the searching
and sorting algorithms for
larger and smaller data
sets.

(c) Students will know
how the different
algorithms for each of the
data structures is
designed and
implemented. They will
need to be able to read,
trace and write code to
implement features of
these data structures.
Students will also
understand the time and
space complexity of the
algorithms and compare
the time and space
complexity of each in
relation to the size of the
dataset.

(a) Understand the
models that can be
followed to produce a
software system; the
waterfall lifecycle, agile
methodologies
(specifically extreme
programming); the spiral
model and rapid
application
development).

(b) need to understand

the tasks, processes,
benefits and drawbacks
of each model and the
similarities and
differences between
each. They need to
understand where each
model is most suitable to
use, and be able to justify
the use in a situation.

problem. Students are
expected to apply
appropriate principles
from an agile
development approach to
the project development.

Key Questions What is computational
thinking? How do we apply
decomposition and
abstraction to a given
problem? What are the
inputs, pre-conditions,
processes and outputs for a
given problem? What are the
programming constructs used
in a any language? What are

Where do I use local and
global variables? Why is it
poor programming practice
to use Global variables?
What is a subroutine? What
is the difference between a
function and a procedure?
What is the function
definition? What are
parameters? Why do

What is an array? What is
a list? What is a tuple?
What is a static and
dynamic data structure?
When do I use either a
static or dynamic data
structure? What is time
complexity? What is
space complexity? Why
do we measure

What are the different
searching algorithms?
What is divide and
conquer? When is it
suitable to use a linear
search? Binary search?
What are the different
sorting algorithms? What
is the time complexity of
the different searching

What is a search engine?
What is a web crawler?
Why do we use a web
crawler? What is search
engine indexing? What is
page rank? What factors
affect a page’s rank in the
page rank algorithm?
What are the different
types of software

What is a problem
definition? What or who
is a stakeholder? What do
we mean by the
complexity of our
project? How do I
describe the essential
features of a
computational?

Curriculum Map

the main components of an
IDE? When is recursion used
to solve a problem. How do I
identify the base case for a
recursive function? How do I
design and implement a
recursive function?

subroutines use
parameters? When do we
pass parameters by
reference or by value? What
are the benefits of using
functions in writing larger
program code? What is
modularity of code? Why is
it useful? When do we use
the procedural paradigm
programming model? What
if we are writing large
programs?

algorithms in terms of
their space and time
complexity? What is best,
average and worse case.
What is a data set? What
is big data? What does big
O notation use the worst
case? What do we mean
by time complexity using
constant, linear,
logarithmic polynomial,
exponential and factorial?
What are tractable and
intractable problems?

and sorting algorithms?
Why is time complexity
important in relation to
the data set given for
each of the algorithms?
What are the different
data structures used to
hold data and programs
in memory? How is each
of the data structures
designed and implements
as algorithms? How do I
implement it? What is the
time and space
complexity of the data
structure.

development
methodologies used?
Where do we need to use
these in a given situation?
What are the benefits and
drawbacks of each model
and where is it
appropriate to use these?

solution explaining these
choices. Explain the
limitations of the
proposed solution. Justify
the solution
requirements? What is
success criteria? What is
the iterative development
process? What is iterative
and final testing? What is
algorithmic design? How
does my success criteria
inform my final product?

Assessment End of unit tests,
Past exam questions to consolidate learning

Exam style HBL questions

End of unit tests,
Exam style HBL questions

Past exam questions to consolidate learning
Practical activities using HTML, CSS And Javascript.

Trial exams
Programming project analysis

Literacy/Numeracy/
SMSC/Character

Computational literacy
Scaffolded answers to LAQ,
guided through AO1, AO2
and AO3 evaluative skills

Computational literacy
Scaffolded answers to LAQ,
guided through AO1, AO2
and AO3 evaluative skills
Mathematical computation
Data handling
Linear Algebra
Discrete mathematics

Computational literacy
Exemplar modelling of
answers
Understanding of key
word definitions.
Scaffolded answers to
LAQ, guided through AO1,
AO2 and AO3 evaluative
skills
Mathematical
computation
Data handling
Linear Algebra
Discrete mathematics
Graph theory

Programming language
literacy
Computational literacy
Exemplar modelling of
answers
Understanding of key
word definitions.
Scaffolded answers to
LAQ, guided through AO1,
AO2 and AO3 evaluative
skills
Mathematical
computation
Data handling
Linear Algebra
Discrete mathematics
Graph theory

Programming language
literacy
Computational literacy
Exemplar modelling of
answers
Understanding of key
word definitions.
Scaffolded answers to
LAQ, guided through AO1,
AO2 and AO3 evaluative
skills

Programming language
literacy
Computational literacy
Exemplar modelling of
answers
Understanding of key
word definitions.
Scaffolded answers to
LAQ, guided through AO1,
AO2 and AO3 evaluative
skills

