
Curriculum Map

Subject: Computer Science: Paper 2 – Algorithms and programming Year group: 13

Time period Autumn 1 Autumn 2 Spring 1 Spring 2 Summer

Content

Declarative Knowledge
–

‘Know What’

2.1.1 -Thinking abstractly
(a) The nature of abstraction.
(b) The need for abstraction.
(c) abstraction and reality.
(d) Devise an abstract model
for a variety of situations.

2.2.2. - Computational
methods
(e) (f) Use of abstraction in
• backtracking
• data mining
• heuristics
• performance modelling
• pipelining
• visualisation

1.2.4 Types of programming languages
(a) programming paradigms.
(b) Procedural languages.
(e) Object-oriented languages with an
understanding of
classes, objects, methods, attributes,
inheritance,
encapsulation and polymorphism.

2.1.5 Thinking concurrently
(a) What parts of a problem could be
solved concurrently.
(b) The benefits and trade-offs that might
result from concurrent processing in a
particular situation.

2.3.1 Algorithms

Recap of (a) Analysis and design of
algorithms
.(b) The suitability of different
algorithms
(c) Big O notation
(d) Comparison of the complexity of
algorithms.
(e) Algorithms for the main data
structures,
(f) Standard algorithms – recap of
searching and sorting. - Introduction
to shortest path algorithms – Djikstra
and A* algorithm

1.3.2 Databases
(a) Relational database, flat file,
primary key, foreign
key, secondary key, entity
relationship modelling,
normalisation and indexing.

1.3.2 Databases continued
(b) capturing, selecting, managing
and exchanging data.
(c) Normalisation to 3NF.
(d) SQL
(e) Referential integrity.
(f) Transaction processing, ACID
record locking
and redundancy.

1.5.2 Moral and ethical issues
The individual moral, social, ethical
and cultural
opportunities and risks of digital
technology.

Revision - See week
by week "run in"
schedule

Component 3
Non Exam Assessment – programming project

- Analysis
-Design

-Iteration(s)
Testing

Evaluation

Curriculum Map

Skills

Procedural Knowledge
–
‘Know How’

2.1.2 -Thinking ahead
a) b) d) Identify the nature
and need of abstraction to be
applied to solutions using
computational thinking
methods.
c) Know the differences
between abstraction and
reality.

2.2.2 Computational methods
Apply the knowledge of:
• backtracking
• data mining
• heuristics
• performance modelling
• pipelining
• visualisation to solve
problems.

1.2.4 Types of programming languages
(a) Understand the need for and
characteristics of a variety of programming
paradigms? Procedural, Logical, Functional,
Object oriented and event driven.
(b) Understand the drawbacks of using
procedural languages to write complex and
larger solutions to problems.
(e) understand the benefits of using OOP
to solve problems as opposed to using
modular procedural code. Understand the
structure of the class and how to create a
class using a programming language. Learn
about creating objects based on the class
and the use of the constructor. Know and
apply the concept of encapsulation to OOP
code. Know and apply the concepts of
inheritance and polymorphism to OOP
code.

2.1.5 Concurrent processing
(a) Determine the parts of a problem that
can be tackled at the same time.
(b) Be able to outline, discuss and evaluate
the benefits and trade off’s that may result
from concurrent processing in a given
situation.

2.3.1 - Algorithms
a) (b) (c) (d) (e) Recap on how to
compare the suitability and
complexity of algorithms in terms of
worst case big O notation time and
space complexity. Students will recap
on the need to understand the Big O
notation for the searching and
sorting algorithms for larger and
smaller data sets.

(f) investigate and analyse how
Dijkstra’s shortest path
algorithm, A* algorithm is carried out
and how they best determine the
shortest path algorithm solution.

1.3.2 Databases
(a) Understand the need for and
creation of a Relational database.
Understand, apply and create
primary keys, foreign keys, secondary
keys, Use entity relationship
modelling to create efficient
relational DBMS or RDBMS using
normalisation and indexing.

b) Methods of capturing, selecting,
managing and exchanging data.
(c) Using Normalisation to create
efficient relational DBMS up to and
including 3NF.
(d) SQL – Interpret and modify SQL
commands to manipulate the data
in a RDBMS.
(e) Understand the need for
Referential integrity in data in a
database and how ensuring this
avoids data redundancy and
duplication.
(f) Understand transaction
processing, ACID,
record locking and redundancy in a
RDBMS (Relational Database
Management System).

1.5.2 Moral and ethical issues
Discuss and evaluate:
• Computers in the workforce.
• Automated decision making.
• Artificial intelligence.
• Environmental effects.
• Censorship and the Internet.
• Monitor behaviour.
• Analyse personal information.
• Piracy and offensive
communications.
• Layout, colour paradigms and
character sets.

Component 3
Non Exam Assessment – programming project
Students will be expected to (3.1) analyse, (3.2) design, (3.3) develop, (3.4) test, (3.5)

They will document a program written in a suitable programming language. The underlying approach to the project is to apply the principles of
computational thinking to a practical coding problem. Students are expected to apply appropriate principles from an agile development approach to the
project development.

Curriculum Map

Key Questions What is computational
thinking? How do we apply
decomposition and
abstraction to a given
problem? What are tractable
and intractable problems?
What is data mining? What is
big data? Where do I apply
these techniques? What are
heuristics? How do I apply
these to computational
problems? How is heuristics
helpful in problem solving?
How does performance
modelling and visualisation
improve the quality of the
data representation? Where
do I ply the rules of
backtracking? How is
pipelining useful in solving
problems computationally?

What is a programming paradigm? Where
might we use a particular paradigm? What
are the drawbacks of using procedural over
OOP? What is the OOP paradigm? What is
a class? How do we create objects from the
class? Why does the IDE need a
constructor? How do I create a class in
program code? What is encapsulation?
What are accessors and mutators and why
do I need to use them to encapsulate the
data? What are getters and setters’
accessors and mutators? What is
inheritance? What is a parent and child
class? What is a base and derived class.
How do I inherit from a parent class? What
is polymorphism? What are the benefits in
solving problems of being able to create
methods using polymorphism. Why is
programming using Object orientation so
efficient? What is concurrent
programming? Where could I apply
concurrent thinking to a given problem?
What are the benefits and trades off’s of
using concurrent programming?

What are the different searching,
sorting and shortest path algorithms?
What is divide and conquer? When is
it suitable to use each algorithm for a
given problem?
What is the time complexity of the
different searching and sorting
algorithms? Why is time complexity
important in relation to the data set
given for each of the algorithms?
What are the different data
structures used to hold data and
programs in memory? How is each of
the data structures designed and
implements as algorithms? What is
the time and space complexity of the
data structure. What is a shortest
path algorithm? Where is this type of
algorithm used in real world
applications? What is Djikstra’s
algorithm? How do I apply this to find
the shortest path? What are
heuristics? Why are heuristics used in
the A* algorithm? Does using
heuristics allow for a more efficient
shortest path result?

What is a flat file database? What is
a Relation database management
system (RDBMS). Why normalise?
What is the benefit? How do I
know I have completed 1NF? What
is 2NF? How do I know my
database is in 2NF? Why use 3NF?
Is my database know a RDBMS? It
is efficient? What is SQL? How do I
use SQL to interpret and modify
the database? What is referential
integrity? Why do I need to ensure
referential integrity? How does it
make my database less prone to
redundancy or duplication of data?
What are tables? What are
records? What are fields? What is
an ER diagram? How do I use an ER
diagram to model the structure of
the entities in my database? What
is transactional processing? What is
ACID (Atomicity,
Consistency, Isolation, Durability)?
How do I apply this to the data in
the database? What are the ethical
and moral issues with using
technology applied to the given
scenarios?

Component 2 What is a problem definition? What or who is a stakeholder? What do we mean by the complexity of our project? How do I describe the essential features
of a computational?
solution explaining these choices. Explain the limitations of the proposed solution. Justify the solution requirements? What is success criteria? What is the
iterative development process? What is iterative and final testing? What is algorithmic design? How does my success criteria inform my final product?

#Assessment End of unit tests,
Programming activities using the OOP paradigm

Past exam questions to consolidate learning
Exam style HBL questions

Trail exams
Programming project

Curriculum Map

Literacy/Numeracy/
SMSC/Character

Programming language
literacy
Computational literacy
Exemplar modelling of
answers
Understanding of key word
definitions.
Scaffolded answers to LAQ,
guided through AO1, AO2
and AO3 evaluative skills

Computational literacy
Exemplar modelling of answers
Understanding of key word definitions.
Scaffolded answers to LAQ, guided through
AO1, AO2 and AO3 evaluative skills
Mathematical computation
Data handling
Linear Algebra
Discrete mathematics

Computational literacy
Exemplar modelling of answers
Understanding of key word
definitions.
Scaffolded answers to LAQ, guided
through AO1, AO2 and AO3
evaluative skills
Mathematical computation
Data handling
Linear Algebra
Discrete mathematics
Graph theory

Programming language literacy
Computational literacy
Exemplar modelling of answers
Understanding of key word
definitions.
Scaffolded answers to LAQ, guided
through AO1, AO2 and AO3
evaluative skills
Mathematical computation
Data handling
Linear Algebra
Discrete mathematics

