

Year group:KS5

Subject: CHEMISTRY

syllabus lesson split 3:2

Time period	yr1 Autumn	yr1 spring	yr1 summer	yr2 autumn	yr2 spring	yr2
						summer
Content	3.1.2 AMOUNT OF SUBSTANCE RAM/RFM the mole	3.1.8 THERMODYNAMICS born -haber cycle Gibbs free energy	3.1.5 KINETICS collision theory maxwell boltzman	3.1.6 CHEMICAL EQUILIBRIA le Chats principal Kc	3.1.11 ELECTROCHEM -cont predicting reaction	3.2.4 P3 AND THEIR OXIDES reactions of p3
Doclarativo	ideal gas eq		effect of temp /conc	-	feasibility using EMF	elements
Declarative	EF/MF equations		Pressure on rate	3.1.10 Kp EQUILIB CONST	batteries incl lead -acid	oxides of p3
Knowledge –	titration calcs		catalysts	describing equilibrium	Hydrogen cell	elements
'Know What'	3.1.4 ENERGETICS	3.3.1 INTRO TO ORGANIC CHEM.	3.3.6 ORGANIC ANALYSIS	constant in terms of partial pressures		acid base nature of P3 elements
	Enthalpy change	nomenclature	id of funct.groups			
	calorimetry	reaction mech	mass spec		SOLULIBRIA	3.2.6 REACTIONS
	bond enthalpies	isomensm	···	rate expression and orders	B-L definitions	SOLUTIONS
		3.3.2 ALKANES		the rate equation	conj acid base pairs	
	3.1 1 ATOMIC STRUCTURE	fract. distillation	3.3.7 ISOMERISM	rate determining step	pH SCALE	Reactions of aq
	Fund.parts	cracking	OPTICAL		calculations to obtain pH	ions with alkali,
	mass nos and isotopes-TOF	combustion	Concept of chirality,	3.1.11 ELECTROCHEMISTRY	of strong acids, strong	carbonate and
	electron config	chlorination	polarimeter and racemates		bases and weak acids	ammonia-
	3.1.3 BONDING			redox reactions to generate	Titration curves	-ligand
	ionic/covalent/metallic	3.3.4 ALKENES		voltage	Indicator theory	substitution
	shapes of molecules /ions	structure, bonding		the electrochemical series	Buffers definitions and	reactions
	bond polarity	, reactivity			calcs	
	intermolecular forces	addition polymerisation	S.S.8 ALDERTIDES AND	3 3 11 AMINES		
	intermolecular forces	addition polymensation	naming them	preparation-red of nitriles		
	3.2 1 PERIODICITY	3.3.3	nuc addition reactions-HCN	phenyl amine	3.2.5 TRANSITION METALS	
	period 3 elements	HALOGENOALKANES	distinguishing aldehydes and	amides	definition of ™	
		nuc, subst	ketones-tollens and fehlings		characteristics	
	3.1.7 REDOX	elimination	tests	3.3.16 CHROMATOGRAPHY	complex ions	
	oxidation states	ozone depletion	oxidation of carbonyls	TLC/column /gas	coloured compounds	
	half equations		reduction of carbonyls	calculating Rf values	variable ox state	
		3.3.5 ALCOHOLS			catalytic activity	
	3.2.2 GROUP 2	production		3.3.12 POLYMERS		
	trends	oxidation	3.3.9 CARBOXYLIC ACIDS	condensation		
	reactions	elimination	AND DERIVATIVES	polyamides/esters		
	solubilities		naming ester formation and	repeating units		
		2 2 3 THE HALOGENS	bydroyleis	inpls related to livir		
		trends	uses of esters-hindlesel			
		action as red and ox	acylation reactions-	3.3.13 AMINO ACIDS		
		agents	acylichlorides and acid	PROTEINS AND DNA		

		uses of chlorine and chlorate identification of halides	anhydrides reacting with nucleophiles(amines, ammonia hydroxide water)	zwitter ions formation of polypeptides enzymes structure of DNA action of anti-cancer drugs <u>3.3.10 AROMATIC</u> structure and stability of benzene ring electrophilic substitution reactions-nitration and acylation		
				3.3.14 ORGANIC SYNTHESIS using prior reactions to create synthetic routes		
				3.3.15 NMR Carbon 13 and H NMR interpretation of spectra		
Skills Procedural Knowledge – 'Know How'	3.1 1 ATOMIC STRUCTURE -Report calculations to an appropriate number of significant figures, given raw data quoted to varying numbers of significant figures. -Calculate weighted means e.g. calculation of an atomic mass based on supplied isotopic abundances.	$\begin{array}{l} \underline{3.1.8 \text{ THERMODYNAMICS}} \\ \text{-be able to perform} \\ \text{calculations of an} \\ \text{enthalpy change using} \\ \text{these Born-Haber cycles.} \\ \text{-Rearrange the equation} \\ \Delta G = \Delta H - T\Delta S \text{ to find} \\ \text{unknown values.} \\ \text{-Determine } \Delta S \text{ and } \Delta H \\ \text{from a graph of } \Delta G \\ \text{versus T.} \end{array}$	3.1.5 KINETICS be able to use collision theory to describe how T,C,P and SA affect reaction rate define activation energy and draw energy level diagrams which incl Ea know how to draw M-B distribution curve and use it to explain effect of T on rate	3.1.6 CHEMICAL EQUILIBRIA -Estimate the effect of changing experimental parameters on a measurable value eg how the value of Kc would change with temperature, given different specified conditions. -Report calculations to an appropriate number of significant figures, given raw	3.1.11 ELECTROCHEM -cont -to understand the role of the SHE -predict reactions using EMF/electrochemical series -understand how a electrochemical cells work-Zn/Cu, Zn/C	3.2.4 P3 AND THEIR OXIDES -to recall the trends in acid base nature of the oxides -to carry out experiments to support learning to understand amphoteric

-Interpret and analyse	-Calculate entropy	- Know how catalysts work,	data quoted to varying	know electrode eqs	nature of Al
spectra.	changes from absolute	examples and how to use	numbers of significant figures.	for-Lead acid battery	oxide
-Carry out calculations using	entropy value -Use the	reaction profiles for	-Understand that calculated	-give examples of prtable	
numbers in standard and	relationship $\Delta G = \Delta H -$	catalysed reactions.	results can only be reported	<u>batteries</u>	3.2.6 REACTIONS
ordinary form e.g. using the	TΔS to determine how		to the limits of the least	<u>-describe the</u>	OF IONS IN AQ
Avogadro constant.	ΔG varies with	3.3.6 ORGANIC ANALYSIS	accurate measurement.	hydrogen-oxygen fuel cell	SOLUTIONS
-Carry out calculations using	temperature.	-Carry out test-tube	-Calculate the concentration		-define lewis
the Avogadro constant.	-Use the relationship ΔG	reactions in the specification	of a reagent at equilibrium.		acids and bases
	$= \Delta H - T\Delta S$ to determine	to distinguish alcohols,	-Calculate the value of an		-be able to write
3.1.2 AMOUNT OF SUBSTANCE	the	aldehydes, alkenes and	equilibrium constant Kc	3.1.12 ACID -BASE	equations that
<u>RAM/RFM</u>	temperature at which a	carboxylic acids.	-Determine the equilibrium	EQUILIBRIA	represent ligand
-Report calculations to an	reaction becomes	-Use precise atomic masses	constant, Kc, for the	-understand and use	substitution
appropriate number of	feasible.	and the precise molecular	reaction of ethanol with	log10 in pH calcs	<u>reactions</u>
significant figures, given raw		mass to determine the	ethanoic acid in the presence	-do students know how to	<u>-carry out</u>
data quoted to varying	3.3.1 INTRO TO ORGANIC	molecular formula of a	of a strong acid	-Carry out pH CALCS for	<u>relevant test</u>
numbers of significant figures.	CHEM.	compound.	catalyst to ethyl ethanoate.	strong acids	tube reactions
-Understand that calculated	-Draw further isomers	-Use data in the Chemistry		-calculate conc to pH and	
results can only be reported to	from a given structure of	Data Sheet or Booklet	3.1.10 Kp EQUILIB CONST	<u>vice versa</u>	
the limits of the least accurate	one isomerIdentify	to suggest possible	-be able to calc Kp from	<u>-state pH to 2 dp</u>	
measurement.	isomers from various	structures for	partial pressures	-understand standard	
-Carry out calculations using	representations	molecules.	-be able to calc partial	form as applied to Kw	
numbers in standard and	-Understand the origin of	-Use infrared spectra and the	<u>pressues</u>	-Calc Ph of strong base	
ordinary form e.g. using the	E-Z	Chemistry Data Sheet		-Calc pH of WA by	
Avogadro constant.	isomerism.	or Booklet to identify		measuring pH at half	
-Carry out calculations using	-Draw different forms of	particular bonds, and	3.1.9. RATE EQUATIONS	neutralisation	
the Avogadro constant.	isomers.	therefore	-know how to devise a rate	<u>-plot pH curves</u>	
-Find the Mr of a volatile		functional groups, and also	<u>expression</u>	-prepare and test a buffer	
liquid.	3.3.2 ALKANES	to identify impurities.	<u>-know how to calculate order</u>	<u>soln</u>	
-Understand that the correct	-Fractional distillation of		of reaction from initial rate		
units need to be in pV = nRT.	a crude oil substitute.		data		
-Carry out calculations with		3.3.7 ISOMERISM	-know how to determine rate	3.2.5 TRANSITION METALS	
the ideal gas equation,	3.3.3 HALOALKANES		<u>const</u>	<u>-carry out test tube</u>	
including rearranging the ideal	-Follow instructions when	- Io recognise	<u>-know how to interpret graphs</u>	reactions of complexes	
gas equation to find unknown	carrying out test-tube	the presence of a chiral	snowing orders of reaction	with variety of ligands to	
quantities.		centre in a given structure in	-know now to understand the	compare substitution	
-Find the empirical formula of	halogenoalkanes to show	ZD or 3D forms.	mech of a reaction given rate	rates	
a metal oxide.	their relative rates of	- 10 draw the 3D	data	-Carry out test tube	
-Find the concentration of	Promore o chloroolkono	representation of chiral		reactions of metal aga	
Eind the mass of calcium	-Prepare a chioroalkane,	draw the structural	3.1.11 ELECTROCHEIVIISTRY	cons budroshlaris	
-rinu une mass of calcium	using a	formulas and displayed	connect these tegether to	understand and draw	
tablet	sonarating funnal and	formulas of	create voltage	shapes of complex ions	
-Find the Mr of MHCO	distillation	enantiomers	CIERCE VOILAge	understand the origin of	
-Find the Mr of succinic acid	-Investigate the role	-Passing nolarised light		cis trans isomerism in so	
-Find the mass of asnirin in an	of chemists in the	through a		nlanar complexes	
aspirin tablet	introduction of legislation	solution of sucrose.		-draw cis trans complexes	

-Find the yield for the	to ban the use of CFCs		<u>3.3.11 AMINES</u>	<u>-perform colorimetry to</u>	
conversion of magnesium to	and in finding	3.3.8 ALDEHYDES AND	describe the mechanism and	determine conc of	
magnesium oxide	replacements.	<u>KETONES</u>	reactions of amines as	coloured ion and collect	
-Find the Mr of a hydrated salt		-carry out test tube reactions	<u>nucleophiles</u>	data for graph.	
(eg magnesium sulfate) by	3.3.4 ALKENES	to distinguish aldehydes and		-reduce Vanadate ion	
heating to constant mass.	-be able to name them	<u>ketones</u>	3.3.16 CHROMATOGRAPHY	using zinc	
-Find the percentage	- -be able to recognise		-Use thin-layer	-perform redox titrations	
conversion of a Group 2	geometric isomerism		chromatography to identify	incl mass of iron ii in an	
carbonate to its oxide by heat.	-use CIP rules to name	3.3.9 CARBOXYLIC ACIDS	analgesics.	iron tablet	
-Determine the number of	isomers	AND DERIVATIVES	-Calculate Rf values from a	-perform autocatalysis	
moles of water of	-be able to recall	practical to observe	chromatogram.	reactions	
crystallisation in a hydrated	reactions of alkenes with	reactions of ethanovi	-Compare retention times and		
calt by titration	Hal bal c H2SOA	chloride with variety of	Rf values with standards to	_	
Construct and /or balanco	he able to write these	nucleanbiles	identify different substances	-	
-construct and/or balance	machanisms EA	nucleophiles	dentity different substances.		
Calculate percentage violde	Musite equations for				
-Calculate percentage yields	-write equations for				
and atom economies of	addition polymerisation		3.3.12 POLYIVIERS		
reactions.	and id repeating units.		-be able to devise repeating		
-Select appropriate titration	-recall issues wrt disposal		<u>units</u>		
data (le identify outliers) in	and recycling		-be able to recognise		
order to calculate mean titres.			polyesters/amides		
-Determine uncertainty when			observe demo of nylon		
two burette readings are used	3.3.5 ALCOHOLS		being made		
to calculate a titre value.	-be able to name them		<u>-be able to explain mpt wrt</u>		
	-be able to classify		IMF between polymers		
3.1.3 BONDING	alcohols and recognise				
-Find the type of structure of	these classifications				
unknowns by experiment (eg	 -know 2 ways to produce 				
to test solubility, conductivity	ethanol and to carry out		3.3.13 AMINO ACIDS		
and ease of melting).	fermentation		PROTEINS AND DNA		
-Deduce the shape according	-know and recall mech		-be able to determine		
to valence shell electron pair	for dehydration of		structures in different pH		
repulsion (VSEPR) principle	alcohols		solns		
when given familiar and	-Know the reactants,		- determine repeat unit for		
unfamiliar examples of	conditions and products		polypeptides		
species.	for the oxidation of		- know the structure of DNA		
-Deflect iets of various liquids	alcohols		-know how to join base pairs		
from burettes to investigate	-be able to draw		with the rest of DNA molecule		
the presence of different types	distillation and reflux				
and relative size of	apparatus.				
intermolecular forces.					
	3.2.3 THE HALOGENS				
	-Carry out test-tube				
N/A	reactions of solutions of				
	the halogens (CL Br I)				
	with colutions containing				
	with solutions containing				

 3.1.7 REDOX	their halide ions (eg KCl,	3.3.10 AROMATIC	
-Work out the oxidation state	KBr, KI).	-use thermodynamic data to	
of an element in a	-Record observations	describe stability of benzene	
compound or ion from the	from reactions of NaCl,	delocalised ring structure over	
formula.	NaBr and Nal with	kekule structure	
-Write half-equations	concentrated sulfuric	-describe the mechanism of	
identifying the oxidation and	acid.	electrophilic addition	
reduction processes in redox	-Carry out tests for		
reactions.	halide ions using acidified		
-Combine half-equations to	silver nitrate, including		
give an overall redox	the use of ammonia to	3.3.14 ORGANIC SYNTHESIS	
equation.	distinguish the silver	-know the reactants and	
	halides formed.	conditions for organic	
3.2.2 GROUP 2	-Explain the trend in	reactions and put them	
-Test the reactions of	electronegativity	together to make common	
Mg–Ba with water and Mg	-Explain the trend in the	synthetic routes	
with steam and record their	boiling point of the		
results.	elements in terms of	<u>3.3.15 NMR</u>	
-Test the solubility	their structure and	-to know how to interpret c 13	
of Group 2 hydroxides by	bonding.	and H 1 NMR spectra using	
mixing solutions of soluble	-explain why silver nitrate	data sheet info	
Group 2 salts with	solution is used to	-understand splitting patterns	
sodium hydroxide and record	identify halide ions, the	for H-1 spectra	
their	silver nitrate solution is		
results.	acidified and ammonia		
-Test the solubility of	solution is added.		
Group 2 sulfates by mixing	-Carry out simple		
solutions of	test-tube reactions to		
soluble Group 2 salts with	identify:		
sulfuric acid	cations – Group 2, NH ₄ ⁺		
and record their results.	anions – Group 7 (halide		
-Test for sulfate ions	ions), OH ⁻ , CO ₃ ^{2−} , SO ₄ ^{2−} .		
using acidified barium chloride			
and			
record their results.			
-Explain the trends in atomic			
radius and first ionisation			
energy.			
-Explain the melting point of			
the elements in terms of their			
structure and bonding.			
-Explain why BaCl ₂ solution is			
used to test for sulfate ions			
and why it is acidified.			
3.1.4 ENERGETICS	1		

	-describe exo and endo thermic reactions -define enthalpy and carry out simple calorimetry PSA9 -Use q=mcDT to calc enthalpy change -Define Hess's law -be able to use HL to calc DHf and DHc -Use bond enthalpies to calc energy changes					
Key Questions	Have students completed summer work? What are the long term plans for students? How much do you know from GCSE? Where can you make connections to GCSE? Are students keeping up with consolidation work? which students are struggling?	Have students got the maths skills to carry out physical chem calculations ? Are practical skills being learnt and applied from RP's that students are performing? Are organic mechanisms being learnt? Are students keeping up with the increased pace of work?	Are students recapping last last terms work? Are practical skills being learnt and applied from RP's that students are performing? Are students planning for their threshold exams?	Which students need to be put into intervention? Have students completed any summer work? Are students planning for the Trial exam?	What areas need to be addressed by students in the light of the trial exams? Which students need to continue with intervention?	identify areas that need to be revised. which content areas need to be revisited?
Assessment	end of topic tests half term test weekly consolidation exercises RP 1	end of topic tests half term tests RP 2,5a, 5b, 6,	end of topic tests half term tests threshold exams RP 4,12	end of topic test half term test RP10, 6,3, 7,9	TRIAL EXAMS End of topic tests half term test RP	second mock paper A level summer terminal papers
Literacy/Numera cy/ SMSC/Character	algebra mathematical computation geometry handling data explaining trends in periodicity Cfc's and debating environmental issues resilience when attempting difficult amount of substance questions	algebra mathematical computation handling data issues relating to plastics and the environment confident contribution in practical group work	algebra mathematical computation handling data confident contribution in practical group work	graph drawing algebra mathematical computation handling data issues relating to cancer treatment confident contribution in practical group work	algebra mathematical computation handling data confident contribution in practical group work	