

Subject: Further Mathematics

Year group: Year 12

This document maps the Year 12 Curriculum in Further Mathematics.

	Phase One	Phase Two	Phase Three
	September – December	January– March	April-July
	(15 weeks)	(12 weeks)	(13 weeks)
Content	INTENT: Students complete the Decision	INTENT: Students complete the Further	INTENT: Students complete an intensive
	Mathematics AS content and learn new Core	Mechanics AS content and finish the Core Pure	revision programme ahead of the external AS
	Pure Mathematics topics which are either	Mathematics topics which are mostly	Further Mathematics exams. After the exams
Declarative	independent of A-level mathematics content or	dependent on the A-level Mathematics topics	students start the A2 Scheme of Work,
Knowledge –	dependent only on A-level mathematics Phase 1	in Phase 2.	covering some of the A-level Mathematics
'Know What'	content.	Coro Buro Mathematics	Mathematics and Decision Mathematics
	Core Pure Mathematics	Proof By Induction	Wathematics and Decision Wathematics.
	Matrices	Volumes of Revolution	The four-week revision programme will cover
	Linear Transformations	Vectors	all 3 modules with the completion of past
	Complex Numbers		papers/exam question papers by topic
	Argand Diagrams (including an introduction to	Further Mechanics	
	Radians)	Momentum and Impulse	A2 Scheme of Work
	Series	Work, Energy and Power	
	Roots of Polynomials	Elastic Collisions (in 1-dimension)	Decision Mathematics
			Floyd's Algorithm
	Decision Mathematics		Planarity Algorithm
	Flowcharts, Sorting and Packing Algorithms		Route Inspection Algorithm (more than 4
	Graphs and Networks		odd nodes)
	Minimum Spanning Tree Algorithms		Critical Path Analysis (Resource
	(Kruskal's and Prim's)		Histograms and Scheduling Diagrams)
	Shortest Path Algorithm (Dijkstra's)		Content covered depends upon calendar
	Route Inspection Algorithm		constraints, certain topics may be taught in
	Graphical Linear Programming		Y13
	Critical Path Analysis		
			A2 Pure Mathematics
			Differentiation
			Integration

Skills Procedural Knowledge – 'Know How'	Learn to select appropriate knowledge and methodology to new number, algebra and geometry concepts and apply them in a range of modelling problems in different contexts in Pure Mathematics. Learn to select and apply appropriate algorithms on a small-scale in Decision Mathematics that in real-life are applied to much larger problems with the aid of a computer.	Learn to select appropriate knowledge and methodology to new number, algebra and geometry concepts and apply them in a range of modelling problems in different contexts in Pure Mathematics. Learn to draw clear diagrams and use them to set up the equations required to solve problems. Recognise the limitations of the models used to answer a variety of problems in context.	Review topics to consolidate mathematical understanding and how to apply this knowledge appropriately in the context of the exam. Learn to select and apply appropriate algorithms on a small-scale in Decision Mathematics that in real-life are applied to much larger problems with the aid of a computer.
Key Questions			
Assessment	Baseline (GCSE) Decision 1 mock (AS paper) Core Pure Mathematics assessment for Complex Numbers and Argand Diagrams	Core Pure Mathematics assessment for Matrices and Linear Transformations Core Pure Mathematics in class assessments for topics covered, some of these may be assessed homeworks. Further Mechanics mock (AS paper)	Core Pure Mathematics Mock Papers Applied Mathematics Mock Paper AS Further Mathematics Exams Students sit two AS papers: Core Pure Mathematics AS paper 1hr 40mins Decision 1 and Further Mechanics 1 AS paper 1hr 40 mins.
Literacy/Numerac y/ SMSC/Character	Understanding and interpreting calculations used in mathematical modelling problems set in real-life contexts. In Decision Mathematics, studying algorithms developed in the 21st century to help solve real- life complex problems with the power of computers.	Understanding and interpreting calculations used in mathematical modelling problems set in real-life contexts. Carrying out algebraic proofs of mathematical identities or formulae used in solving problems.	Understanding and interpreting calculations used in mathematical modelling problems set in real-life contexts. In Decision Mathematics, studying algorithms developed in the 21st century to help solve real-life complex problems with the power of computers.
	Aspiration, Resilience, Initiative, Confidence	Aspiration, Resilience, Initiative, Confidence	Aspiration, Resilience, Initiative, Confidence